
rv8: a high performance RISC-V to x86 binary translator
Michael Clark

The rv8 contributors
michaeljclark@mac.com

Bruce Hoult
The rv8 contributors
bruce@hoult.org

ABSTRACT
Dynamic binary translation has a history of being used to ease tran-
sitions betweenCPU architectures[7], includingmicro-architectures.
Modern x86 CPUs, while maintaining binary compatibility with
their legacy CISC instruction set, have internal micro-architectures
that resemble RISC. High performance x86micro-architectures have
long used a CISC decoder front-end to crack complex instructions
into smaller micro-operations. Recently macro-op fusion [17][6]
has been used to combine several instructions into one micro-op.
Both techniques change the shape of the ISA to match the inter-
nal µop micro-architecture. Well-known binary translators also
use micro-op internal representations to provide an indirection
between the source and target ISAs as this makes the addition of
new instruction sets much easier.

We present rv8, a high performance RISC-V simulation suite con-
taining a RISC-V JIT (Just In Time) translation engine specifically
targeting the x86-64 instruction set. Achieving the best possible
mapping from a given source to target ISA pair requires a purpose
designed internal representation. This paper explores a simple and
fast translation from RISC-V to x86-64 that exploits knowledge of
the geometries of the source and target ISAs, ABIs, and current
x86-64 micro-architectures with a goal of producing a near optimal
mapping from the 31 register source ISA to the 16 register target
ISA. Techniques are explored that exploit the CISC encoding to
increase instruction density, coalescing micro-ops into CISC in-
structions with the goal of generating the minimum number of
micro-ops at the target micro-architectural level.

CCS CONCEPTS
• Computer systems organization → Reduced instruction
set computing; Complex instruction set computing;

KEYWORDS
dynamic binary translation, RISC, CISC
Reference Format:
Michael Clark and Bruce Hoult. 2017. rv8: a high performance RISC-V to
x86 binary translator. First Workshop on Computer Architecture Research with
RISC-V , Boston, MA, USA, October 2017 (CARRV 2017), 7 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CARRV 2017, October 2017, Boston, MA, USA
© 2017 Copyright held by the owner/author(s).

1 INTRODUCTION
RISC-V [20] is a modern, elegant and extensible open source instruc-
tion set architecture originally designed for computer architecture
research. Similar to the Linux kernel two decades earlier in op-
erating systems, RISC-V provides a standard and open base ISA
and competitive reference hardware designs that anyone can freely
use as-is or as a base for further innovation. This makes RISC-V
uniquely suitable for the next phase of development in microproces-
sor hardware architectures much as the Linux kernel serves as the
software foundation for embedded, mobile and server computing
on a huge variety of CPU architectures and with a proliferation of
operating systems such as Android, Tizen, Red Hat, Ubuntu, Fedora,
Debian and many more.

Dynamic binary translation has frequently [7] [14] [2] [1] been
used to provide binary compatibility for applications targeting
legacy architectures during transitions to new architectures, how-
ever it can also be used to enable compatibility for binaries from
newer architectures to allow for their execution on legacy hard-
ware. Given x86 is the dominant architecture in cloud computing
environments, dynamic binary translation provides a convenient
means to enable RISC-V binary compatibility on existing hardware.

For binary translation to be acceptable as a mechanism to run
RISC-V application images on legacy x86 hardware in the cloud, the
performance must be similar to that of native code and there must
be compelling advantages beyond performance, such as increased
security [23]. While RISC-V is designed as an instruction set for
hardware its features also make it an excellent platform abstraction
for high performance virtualization. With this in mind, the goal
of rv8 is to provide a binary translation platform that is able to
achieve near native performance to enable secure RISC-V virtual
machines in cloud computing environments.

Given Intel’s and AMD’s access to the latest process nodes[3],
4+ GHz clock speeds[22], superscalar execution, several dozen
cores[15] and hundreds of GB of memory in a server, a near native
speed RISC-V binary translator is likely to be the fastest RISC-V
implementation and most practical build environment for things
such as operating system distributions for some years to come.

2 PRINCIPLES
The rv8 binary translation engine has been designed as a hybrid
interpreter and JIT compiler. The translator first interprets code and
profiles it for hot paths [12]. Hot paths are then JIT translated to
native code. The translation engine maintains a call stack to allow
runtime inlining of hot functions. A jump target cache is used to
accelerate returns and indirect calls through function pointers. The
translator supports mixed binary translation and interpretation
to handle instructions that do not yet have native translations.
Currently, RISC-V ‘IM’ code is translated while ‘AFD’ is interpreted.
The rv8 translator also supports RVC compressed code [19].



CARRV 2017, October 2017, Boston, MA, USA Michael Clark and Bruce Hoult

load ELF
interpret
and profile

trace
and emit

execute
native code

halt / exit

Figure 1: Principle of operation

3 OPTIMISATIONS
The rv8 binary translator performs JIT translation of RISC-V code to
x86-64 code. This is a challenging problem because the shapes of the
instruction set architectures differ in a number of ways. RISC-V is a
31 register load/store reduced instruction set architecture while x86-
64 is a 16 register complex instruction set architecture where loads
and stores can be embedded in most instructions using indirect
indexed memory operands. The challenge for a high performance
JIT translator is to achieve as dense as possible mapping from RISC-
V to x86-64 micro-ops via the legacy CISC decoder.

3.1 Register allocation
If the emulated ISA has significantly fewer registers than the host
ISA – for example emulating x86 on a typical RISC – then register
allocation is trivial. Just permanently assign each emulated register
to a host register. In other cases translators normally either store all
emulated registers in a memory array, or run a register allocation
algorithm similar to a conventional compiler, treating source code
registers like high level language variables or intermediate language
virtual registers. The former approach is easy to write and translates
quickly, but the translated code runs slowly. The latter approach
slows translation but the generated code can run quickly – except
possibly at control flow joins (phi nodes); and a number of move
instructions may be required to resolve different register allocations
on different execution paths.

rv8 approaches the register set size problem by making the ob-
servation that register usage is not evenly distributed, but is heavily
biased to the ABI function call argument registers, stack pointer,
and function return address register. We statically allocate each
RISC-V register to either one of twelve fixed host x86-64 registers
or to memory. Dynamic execution profiles were captured from long
running programs (such as the Linux kernel) to find the dominant
register set. The dominant set appears to be relatively stable. Refer
to Figure 1 for the static allocation currently used.

The ‘C’ compressed instruction extension choice of eight regis-
ters is based on the same observation, though in that case it is the
static distribution of register usage that matters, not dynamic. The
difference is small. If future compilers are taught to favour the RVC
registers to get better code compression our translator speed will
also benefit.

RISC-V registers that are not mapped to an x86-64 register are
accessed indirectly using the rbp register. e.g. qword [rbp+0xF8]
would be used to access the RISC-V t4 register.

Frequently accessed registers that are not in the statically allo-
cated set will reside in L1 cache so accesses to spilled registers are
relatively fast (approximately 1 nanosecond or 3 cycles latency),

RISC-V x86-64

XOR a1, a5, a6

XOR a1, a1, a6

XOR t4, t4, t5

XOR a5, a5, s1

MOV r9, r12
XOR r9, r14

XOR r9, r14

MOV rax, qword [rbp+0xF8]
XOR qword [rbp+0xF0], rax

XOR r13, qword [rbp+0x50]

Figure 2: Complex memory operands

nevertheless in cases where the compiler allocates several hot reg-
isters outside of the statically allocated register set, substantial
performance can be lost.

Registers that are allocated in memory is one place where the
translator can take advantage of x86’s complex memory operands,
allowing it to embed references to spilled registers directly within
instructions rather than issuing separate loads and stores. This
helps the translator maintain instruction density which lowers
instruction cache pressure and helps improve throughput.

It is too late for the translator to rearrange stack memory for
optimal stack spills as memory accesses must be translated precisely.
RISC-V programs are optimised for 31 registers so stack spills are
much less frequent. A future version of the translator may use a
dynamic register allocator with live range splitting or potentially
single static assignment [10] [4] [13]. This is discussed in Section 5.

3.2 CISC vs RISC
rv8 makes use of CISC memory operands to access registers resid-
ing in the memory backed register spill area. The complex memory
operands end up being cracked into micro-ops in the CISC pipeline,
however their use helps increase instruction density, which in-
creases performance due to better use of instruction cache. Figure 2
shows various embeddings for resident and spilled registers.

There are many combinations of instruction expansions depend-
ing on whether a register is in memory or whether there are two
or three operands. A three operand RISC-V instruction is trans-
lated into a move and a destructive two operand x86-64 instruction.
Temporary registers are used if both operands are memory backed.

Future versions of the translator may perform passes to coalesce
loads, ALU ops and stores into ALU ops with memory operands.
This is discussed in Section 5.

3.3 Translator registers
The rv8 translator needs to use several host registers to point to
translator internal structures and for use as temporary registers
during emulation of some instructions.



rv8: a high performance RISC-V to x86 binary translator CARRV 2017, October 2017, Boston, MA, USA

RISC-V x86-64 Spill slot

zero
ra rdx [rbp + 16]
sp rbx [rbp + 24]
gp [rbp + 32]
tp [rbp + 40]
t0 rsi [rbp + 48]
t1 rdi [rbp + 56]
t2 [rbp + 64]
s0 [rbp + 72]
s1 [rbp + 80]
a0 r8 [rbp + 88]
a1 r9 [rbp + 96]
a2 r10 [rbp + 104]
a3 r11 [rbp + 112]
a4 r12 [rbp + 120]
a5 r13 [rbp + 128]
a6 r14 [rbp + 136]
a7 r15 [rbp + 144]
s2 [rbp + 152]
s3 [rbp + 160]
s4 [rbp + 168]
s5 [rbp + 176]
s6 [rbp + 184]
s7 [rbp + 192]
s8 [rbp + 200]
s9 [rbp + 208]
s10 [rbp + 216]
s11 [rbp + 224]
t3 [rbp + 232]
t4 [rbp + 240]
t5 [rbp + 248]
t6 [rbp + 256]

Table 1: Static register allocation

• Store instructions require the use of two temporary registers
if both register operands are in the register spill area.
• x86 variable offset shift instructions require the shift amount
to be in the cl register.
• x86 instructions such as imul and idiv require the use of
two temporary registers as they take implicit operands and
clobber rax and rdx.

The registers rax and rcx were chosen over rax and rdx to
optimise for variable offset shift instructions as these are more
frequent and more latency sensitive than multiplies and divides.
The translator uses rbp to point at the register spill area and rsp
points at the host stack.

Four x86 host registers are reserved leaving twelve registers
available for mapping directly to RISC-V registers. See Table 2 for
details on translator reserved registers.

RISC-V pc x86-64 rip

0x104 - 0x00000

0x106 - 0x10106

0x108 - 0x12108

0x10a - 0x00000

0x2f2 - 0x112f2

0x2f4 - 0x00000

0x2f6 - 0x00000

0x2f8 - 0x102f8

0x7fff000003c0

0x7fff000004c0

0x7fff00001800

0x7fff00002a40

Figure 3: L1 translation cache

3.4 Prologue and epilogue
The interpreter is normal C code that can use any host register,
and so always uses the memory array to store RISC-V registers.
Therefore an assembly-language prologue loads RISC-V registers
from memory to their assigned host registers when transitioning
from the interpreter to native code and an epilogue saves RISC-V
registers from host registers back to memory when transitioning
from native code to the interpreter.

The emitted epilogue and prologue is relatively large so the JIT
translator works tominimize the number of transistions from native
code back to the translator. Nested loops run completely in native
code without any returns to the interpreter.

3.5 Indirect branch acceleration
Indirect unconditional branches, such as calls through function
pointers, cannot be statically translated as the target address of their
host code is not known at the time of translation. rv8 maintains
a hashtable mapping guest program addresses to translated host
native code addresses. A full lookup is relatively slow because it
requires saving caller-save registers and calling into C++ code.

To accelerate indirect calls through function pointers, a small
assembly stub looks up the target address in a sparse 1024 entry
direct mapped cache, and falls back to a slow call into the interpreter
if the RISC-V target address is not found. The cache is then updated
so that later indirect calls to the same RISC-V target address can be
accelerated [18].

The direct mapped translation cache is indexed by bits[10:1]
of the guest address as shown in Figure 3. Bit zero can be ignored
because RISC-V instructions must start on a 2-byte boundary.

Some RISC-V indirect branches can be interpreted as direct
branches which makes their translation more efficient. In particular
the RISC-V CALL and TAIL macros for relative far unconditional
branches. The CALL and TAIL macro expansions include the jump
and link register instruction. The CALL macro expands to:

1: auipc ra, %pcrel_hi(sym)
jalr ra, %pcrel_lo(1b)(ra)

The jump and link register instruction would normally be con-
sidered an indirect branch, however the relative immediate value



CARRV 2017, October 2017, Boston, MA, USA Michael Clark and Bruce Hoult

x86-64 Translator register purpose

rbp pointer to the register spill area and the L1 translation cache
rsp pointer to the host stack for procedure calls
rax general purpose translator temporary register
rcx general purpose translator temporary register

Table 2: Translator reserved registers

RISC-V x86-64

AUIPC ra,%pcrel_hi(fn)
JALR ra,%pcrel_lo(fn)(ra)

SLLI a0,a0,32
SRLI a0,a0,32

JALR zero,ra

ADDI a0,a0,-1

MOV rdx, 0x1a80c

MOVZX r8d, r8

CMP rdx, 0x1a80c
JNE tail_exit

ADD r8, -1

Figure 4: Inline caching and macro-op fusion

for the call instruction sequence is fully specified and can be inter-
preted as a direct branch using macro-op fusion. rv8 includes an
optimisation to translate these sequences of instructions as direct
branches using macro-op fusion, as described in Section 3.7 and
Table 3.

3.6 Inline caching
The translator inlines hot functions using profile information cap-
tured during the interpretation phase. Procedure call control flow is
followed during tracing and procedure calls and returns are inlined
within the emitted native code [5].

Returns are another form of indirect unconditional branch, and
also make use of the translation cache, however in the case where
a procedure call is inlined, the indirect return can be elided and re-
placed with a comparison of the program counter with the expected
return address. See Figure 4 for an example.

The translator maintains a return address stack to keep track
of procedure returns. Upon reaching an inlined procedure RET
instruction (jalr zero, ra), the link register (ra in RISC-V, rdx in
the x86 translation) is compared against the caller’s known return
address and if it matches, control flow continues along the return
path. In the case that the function is not inlined, the translation
cache is used to lookup the address of the translated code. An inlined
subroutine call needs to test the return address due to context
switching and functions such as setjmp and longjmp.

3.7 Macro-op fusion
The rv8 translator implements an optimisation known as macro-op
fusion [17][6] [9] whereby specific patterns of adjacent instruc-
tions are translated into a shorter sequence of host instructions.
The macro-op fusion pattern matcher has potential to increase per-
formance with the addition of common patterns. Table 3 shows
macro-op fusion patterns currently implemented by rv8.

rv8 currently only macro-op fuses instruction sequences where
the destination register of an earlier RISC-V instruction is over-
writen by a later instruction in the sequence. As the same restriction
also applies to hardware macro-op fusion implementations, and
macro-op fusion is likely to be a key technique in high performance
RISC-V processors, we expect future compiler code generation to
be tweaked to maximize fusion opportunities.

A technique known as deoptimisation [11] can be employed
to allow elision of writes to temporary registers in macro-op fu-
sion patterns assuming the translator sees the register overwritten
within its translation window. Deoptimisation requires that the op-
timised translation has an accompanying deoptimisation sequence
to fill in elided register values, and this is played back in the case
of a fault (device or debug interrupt) so that the visible machine
state precisely matches that which the ISA dictates. rv8 does not
presently implement deoptimisation, however it may be necessary
to allow more sophisticated optimisations.

3.8 Branch tail dynamic linking
The translator performs lazy translation of the source program
during tracing. When it reaches a branch, the translator can only
link both sides of the branch if there is an existing native code
translation for the not taken side of the branch.

To accelerate branch tail exits, the translator emits a relative
branch to a trampoline which is used to return the guest program
counter to the tracer main loop. The tracer adds the branch to a
table of branch fixup addresses indexed by target guest address. If
the branch direction becomes hot, once it has been translated, all
relative branches that point to the branch tail trampolines will be
relinked to branch directly to the translated native code.

3.9 Sign extension versus zero extension
rv8 has to make sure that all 32-bit operations on registers have
their result sign extended instead of zero-extended. The normal
behaviour of 32-bit operations on x86-64 is to zero fill bits 32 to bit
63 whereas RISC-V requires implementations to sign extend bit 31
to bit 63 [21].



rv8: a high performance RISC-V to x86 binary translator CARRV 2017, October 2017, Boston, MA, USA

Macro-op fusion pattern Macro-op fusion expansion

AUIPC r1, imm20; ADDI r1, r1, imm12 PC-relative address is resolved using a single MOV instruction.
AUIPC r1, imm20; JALR ra, imm12(r1) Target address is constructed using a single MOV instruction.
AUIPC ra, imm20; JALR ra, imm12(ra) Target address register write is elided.
AUIPC r1, imm20; LW r1, imm12(r1) Fused into single MOV with an immediate addressing mode
AUIPC r1, imm20; LD r1, imm12(r1) Fused into single MOV with an immediate addressing mode
SLLI r1, r1, 32; SRLI r1, r1, 32 Fused into a single MOVZX instruction.
ADDIW r1, r1, imm12; SLLI r1, r1, 32; SRLI r1, r1, 32 Fused into 32-bit zero extending ADD instruction.
SRLI r2, r1, imm12; SLLI r3, r1, (64-imm12); OR r2, r2, r3 Fused into 64-bit ROR with one residual SHL or SHR temporary
SRLIW r2, r1, imm12; SLLIW r3, r1, (32-imm12); OR r2, r2, r3 Fused into 32-bit ROR with one residual SHL or SHR temporary

Table 3: Macro-op fusion patterns and expansions

One potential optimisation is lazy sign extension. It may be
possible in a future version of the JIT translation engine to elide re-
dundant sign extension operations, however it is important that the
register state precisely matches the ISA semantics before executing
any instructions that may cause faults e.g. loads and stores.

3.10 Bit manipulation intrinsics
The benchmarks contain compression algorithms, digest algorithms
and cryptographic ciphers which can take advantage of bit manipu-
lation instructions such as rotate and bswap. Present day compilers
detect rotate and byte swap bitwise logical operations by matching
intermediate representation patterns that can be lowered directly
to bit manipulation instructions such as ROR, ROL, BSWAP on x86-64.

Intermediate representation detection of bit manipulation intrin-
sics has the benefit of accelerating code that does not use inline
assembly or compiler builtin functions. RISC-V currently lacks bit
manipulation instructions however there are proposals to add them
in the ‘B’ extension. The following is a typical byte swap pattern.
• 32-bit integer byteswap pattern

((rs1 >> 24) & 0x000000ff) |
((rs1 << 8 ) & 0x00ff0000) |
((rs1 >> 8 ) & 0x0000ff00) |
((rs1 << 24) & 0xff000000)

rv8 implements rotate macro-op fusion which can translate two
shift instructions and one ‘or’ instruction with the correct offsets
into one shift and one rotate. The rotate macro-op fusion needs
to preserve the residual temporary register side effects so that the
register file contents are precisely matched, as it can’t easily prove
the residual temporary register is not later used. Deoptimisation
would be required to elide the temporary register write.
• 32-bit rotate right or left pattern

(rs1 >> shamt) | (rs1 << (32 - shamt))

• 64-bit rotate right or left pattern
(rs1 >> shamt) | (rs1 << (64 - shamt))

4 BENCHMARKS
To assess results of the rv8 binary translation strategies, a suite of
computationally intensive benchmarks [8] were run comparing rv8
to QEMU riscv64 and QEMU aarch64. The rv8 benchmark suite

includes the AES cipher, dhrystone v1.1, miniz compression and
decompression, the NORX cipher, prime number generation, qsort
and the SHA-512 digest algorithm.

This table summarises the performance ratio geomeans:

optimisation qemu qemu rv8 native
level aarch64 riscv64 riscv64 x86-64

-O3 4.68 4.57 2.62 1.00
-Os 4.62 5.20 2.47 1.00

See benchmark runtime bar charts and tables in Figure 5, Figure 6,
Table 7 and Table 8, performance ratios in Table 9 and Table 10, and
finally millions of instructions per second for emulated RISC-V and
native x86-64 in Table 11 and Table 12.

5 CONCLUSION AND FUTUREWORK
The translation strategy employed by rv8 appears to have borne
fruit when compared to other open source dynamic binary transla-
tors. Translation is simple and fast and the generated code is good
enough for the overall performance to be on on average approxi-
mately 75% faster than the leading competitor. On some benchmarks
we are approximately 30% slower than native x86-64 code. However
we believe there is still a lot of remaining optimization potential in
our approach that has not yet been realized.

rv8 implements a user mode simulator and an interpreted full
system emulatormodelling the RISC-V privileged ISAwith anMMU,
interrupts, MMIO devices and privilege levels. The current version
of the rv8 JIT translator is presently only applied to user mode
simulation so future work will explore applying dynamic binary
translation to the full system emulator with hardware accelerated
MMU using shadow paging. Future work may include:
• Exploring dynamic register allocation algorithms.
• Coalescing loads and stores into complex memory operands.
• Register write elision for pipelined operations with short live
spans, to make better use of translator temporary registers.
• Hardware accelerated MMU using shadow paging.

ACKNOWLEDGMENTS
The authors would like to thank Petr Kobalicek for providing the
excellent AsmJit [16] library used for rv8’s x86-64 back-end support.



CARRV 2017, October 2017, Boston, MA, USA Michael Clark and Bruce Hoult

0

2

4

6

8

10

aes dhrystone miniz norx primes qsort sha512

Ru
nt
im

e
(s
ec
s)

native-x86-64-O3-runtime
rv8-riscv64-O3-runtime

qemu-riscv64-O3-runtime
qemu-aarch64-O3-runtime

Figure 5: Runtimes 64-bit -O3

0

2

4

6

8

10

aes dhrystone miniz norx primes qsort sha512

Ru
nt
im

e
(s
ec
s)

native-x86-64-Os-runtime
rv8-riscv64-Os-runtime

qemu-riscv64-Os-runtime
qemu-aarch64-Os-runtime

Figure 6: Runtimes 64-bit -Os

qemu qemu rv8 native
program aarch64 riscv64 riscv64 x86-64
aes 1.31 2.16 1.53 0.32
dhrystone 0.98 0.57 0.20 0.10
miniz 2.66 2.21 1.60 0.77
norx 0.60 1.17 1.20 0.22
primes 2.09 1.26 0.70 0.60
qsort 7.38 4.76 1.22 0.64
sha512 0.64 1.24 0.81 0.24
Sum 15.66 13.37 7.26 2.89

Figure 7: Benchmark Runtimes -O3 (seconds)

qemu qemu rv8 native
program aarch64 riscv64 riscv64 x86-64
aes 1.22 1.91 1.31 0.37
dhrystone 5.42 2.59 1.31 0.39
miniz 2.74 2.24 1.73 0.83
norx 1.58 1.53 1.14 0.24
primes 1.97 1.23 0.77 0.59
qsort 7.99 5.27 0.90 0.66
sha512 0.64 1.14 0.67 0.25
Sum 21.56 15.91 7.83 3.33

Figure 8: Benchmark Runtimes -Os (seconds)

qemu qemu rv8 native
program aarch64 riscv64 riscv64 x86-64
aes 4.12 6.76 4.81 1.00
dhrystone 9.96 5.87 2.05 1.00
miniz 3.46 2.86 2.07 1.00
norx 2.73 5.33 5.47 1.00
primes 3.49 2.11 1.17 1.00
qsort 11.55 7.46 1.91 1.00
sha512 2.66 5.13 3.36 1.00
Geomean 4.57 4.68 2.62 1.00

Figure 9: Performance Ratio -O3

qemu qemu rv8 native
program aarch64 riscv64 riscv64 x86-64
aes 3.29 5.16 3.53 1.00
dhrystone 13.97 6.66 3.38 1.00
miniz 3.30 2.70 2.08 1.00
norx 6.59 6.36 4.74 1.00
primes 3.31 2.07 1.29 1.00
qsort 12.20 8.05 1.38 1.00
sha512 2.56 4.58 2.69 1.00
Geomean 5.20 4.62 2.47 1.00

Figure 10: Performance Ratio -Os

qemu qemu rv8 native
program aarch64 riscv64 riscv64 x86-64
aes - 2414 3395 11035
dhrystone - 1843 5274 8369
miniz - 2625 3622 5530
norx - 2223 2167 9112
primes - 2438 4421 6100
qsort - 644 2518 5780
sha512 - 2982 4556 12177
Geomean - 1985 3552 7945

Figure 11: Millions of Instructions Per Second -O3

qemu qemu rv8 native
program aarch64 riscv64 riscv64 x86-64
aes - 2655 3879 10072
dhrystone - 1250 2462 9073
miniz - 2650 3427 5052
norx - 1817 2439 8852
primes - 2226 3555 6101
qsort - 572 3340 6063
sha512 - 3269 5567 12206
Geomean - 1821 3402 7855

Figure 12: Millions of Instructions Per Second -Os



rv8: a high performance RISC-V to x86 binary translator CARRV 2017, October 2017, Boston, MA, USA

REFERENCES
[1] Wikipedia authors. 1994. Mac 68k emulator: a Motorola 680x0 software emulator

built into all versions of the classic Mac OS for PowerPC. https://en.wikipedia.
org/wiki/Mac_68k_emulator. (1994).

[2] Sorav Bansal and Alex Aiken. 2008. Binary translation using peephole superopti-
mizers. In Proceedings of the 8th USENIX conference on Operating systems design
and implementation. USENIX Association, 177–192.

[3] Mark Bohr. 2014. 14 nm Process Technology: Opening New Horizons. In Intel
Developer Forum (IDF’14).

[4] Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph
Mallon, and Andreas Zwinkau. 2013. Simple and Efficient Construction of Static
Single Assignment Form. In Proceedings of the 22Nd International Conference
on Compiler Construction (CC’13). Springer-Verlag, Berlin, Heidelberg, 102–122.
https://doi.org/10.1007/978-3-642-37051-9_6

[5] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An Infras-
tructure for Adaptive Dynamic Optimization. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’03). IEEE Computer Society, Washington, DC, USA, 265–275.
http://dl.acm.org/citation.cfm?id=776261.776290

[6] Christopher Celio, Palmer Dabbelt, David A. Patterson, and Krste Asanovic. 2016.
The Renewed Case for the Reduced Instruction Set Computer: Avoiding ISA
Bloat with Macro-Op Fusion for RISC-V. CoRR abs/1607.02318 (2016). http:
//arxiv.org/abs/1607.02318

[7] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin, Tony
Tye, S. Bharadwaj Yadavalli, and John Yates. 1998. FX!32: A Profile-Directed
Binary Translator. IEEE Micro 18, 2 (March 1998), 56–64. https://doi.org/10.1109/
40.671403

[8] Michael Clark. 2017. rv8 benchmark results: Runtimes, Instructions Per Second,
Retired Micro-ops, Executable File Sizes and Dynamic Register Usage. https:
//rv8.io/bench. (2017).

[9] Intel Corporation. 2006. Intel 64 and IA-32 Architectures Optimiza-
tion Reference Manual. https://www.intel.com/content/www/us/en/
architecture-and-technology/64-ia-32-architectures-optimization-manual.
html. (2006). [Online; page 2-18].

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. 1991. Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (Oct. 1991),
451–490. https://doi.org/10.1145/115372.115320

[11] Evelyn Duesterwald. 2005. Design and engineering of a dynamic binary optimizer.
Proc. IEEE 93, 2 (2005), 436–448.

[12] Evelyn Duesterwald and Vasanth Bala. 2000. Software Profiling for Hot Path
Prediction: Less is More. SIGPLAN Not. 35, 11 (Nov. 2000), 202–211. https:
//doi.org/10.1145/356989.357008

[13] Sebastian Hack and Gerhard Goos. 2006. Optimal Register Allocation for SSA-
form Programs in Polynomial Time. Inf. Process. Lett. 98, 4 (May 2006), 150–155.
https://doi.org/10.1016/j.ipl.2006.01.008

[14] Paul Hohensee, Mathew Myszewski, David Reese, and Sun Microsysytems. 1996.
Wabi CPU emulation. In Proceedings Hot Chips VIII.

[15] James Jeffers, James Reinders, and Avinash Sodani. 2016. Intel Xeon Phi Processor
High Performance Programming: Knights Landing Edition. Morgan Kaufmann.

[16] Petr Kobalicek. 2017. AsmJit: A Complete x86/x64 JIT and Remote Assembler for
C++. https://github.com/asmjit/asmjit. (2017).

[17] M.H. Lipasti, S. Hu, J.E. Smith, and I. Kim. 2006. An approach for implementing
efficient superscalar CISC processors. 2006 IEEE 12th International Symposium
on High Performance Computer Architecture (HPCA) 00 (2006), 41–52. https:
//doi.org/10.1109/HPCA.2006.1598111

[18] Mathias Payer and Thomas R. Gross. 2010. Generating Low-overhead Dynamic
Binary Translators. In Proceedings of the 3rd Annual Haifa Experimental Systems
Conference (SYSTOR ’10). ACM, New York, NY, USA, Article 22, 14 pages. https:
//doi.org/10.1145/1815695.1815724

[19] Andrew Waterman. 2011. Improving energy efficiency and reducing code size
with RISC-V compressed. (2011).

[20] Andrew Waterman. 2016. Design of the RISC-V Instruction Set Architecture. Ph.D.
Dissertation. EECS Department, University of California, Berkeley. http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html

[21] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. 2011.
The risc-v instruction set manual, volume i: Base user-level isa. EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62 (2011).

[22] Sapumal Wijeratne, Nanda Siddaiah, Sanu Mathew, Mark Anders, Ram Krishna-
murthy, JeremyAnderson, SeungHwang,MatthewErnest, andMarkNardin. 2006.
A 9GHz 65nm Intel Pentium 4 processor integer execution core. In Solid-State
Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International.
IEEE, 353–365.

[23] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native client:
A sandbox for portable, untrusted x86 native code. In Security and Privacy, 2009
30th IEEE Symposium on. IEEE, 79–93.

https://en.wikipedia.org/wiki/Mac_68k_emulator
https://en.wikipedia.org/wiki/Mac_68k_emulator
https://doi.org/10.1007/978-3-642-37051-9_6
http://dl.acm.org/citation.cfm?id=776261.776290
http://arxiv.org/abs/1607.02318
http://arxiv.org/abs/1607.02318
https://doi.org/10.1109/40.671403
https://doi.org/10.1109/40.671403
https://rv8.io/bench
https://rv8.io/bench
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/356989.357008
https://doi.org/10.1145/356989.357008
https://doi.org/10.1016/j.ipl.2006.01.008
https://github.com/asmjit/asmjit
https://doi.org/10.1109/HPCA.2006.1598111
https://doi.org/10.1109/HPCA.2006.1598111
https://doi.org/10.1145/1815695.1815724
https://doi.org/10.1145/1815695.1815724
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html

	Abstract
	1 Introduction
	2 Principles
	3 Optimisations
	3.1 Register allocation
	3.2 CISC vs RISC
	3.3 Translator registers
	3.4 Prologue and epilogue
	3.5 Indirect branch acceleration
	3.6 Inline caching
	3.7 Macro-op fusion
	3.8 Branch tail dynamic linking
	3.9 Sign extension versus zero extension
	3.10 Bit manipulation intrinsics

	4 Benchmarks
	5 Conclusion and future Work
	Acknowledgments
	References

