
RISC-V8
a high-performance

RISC-V to x86-64 binary translator

Image Credit: Advanced Engine Research P32 T 4.0 Litre V8 - 650 HP
http://mulsannescorner.com/aerturbolmp1v8.html

Standards

•Open Container Initiative – Linux Foundation

•Cloud Storage, Networking, and Compute?

•T10 – SCSI, SATA, Fibre Channel, iSCSI, …

•Ethernet – IEEE 802.3, IETF Internet Protocol, …

•C – ISO/IEC 9899:2011, IEEE 754 Floating Point, …

•POSIX.1-2008 – IEEE Std 1003.1™-2008, …

Why

•Open Container Initiative – Linux Foundation

•Cloud Storage, Networking, and Compute

•Standardized Container Execution Environment

•a full stack standard requires a standardized ISA

•x86-64 – encumbered de facto standard ISA

•RISC-V – simple and elegant open standard ISA

How

•Develop RISC-V cloud execution environment

•Linux/POSIX User mode simulator

•Container execution environment

•Linux/POSIX Full system emulator

•Virtual machine execution environment

•Requires sufficient performance to be competitive

When

•Today

•x86-64/AMD64 dominates commodity cloud

•202x

•RISC-V container execution environment

•~1X order of magnitude performance ratio

•Piggy-back on x86-64/AMD64 commodity cloud

Step One

•Machine generated interpreter

•Encoding/decoding derived from riscv-opcodes

•Translator needs return to interpreter

Step Two

•Write a binary translator

•…

RISC-V vs x86-64
RISC-V x86-64

Design RISC CISC

Architecture Load/Store Register Memory

Registers 31 16

Bit width 64/32 64/32

Immediate width 20/12 64/32

Instruction sizes 2,4 1,2,3,4,5,6,7,8,9,…

Extension Sign Extend Zero / Merge

Control flow Link Register Stack

The problem

Image Credit: Ubisoft Tetris Ultimate®
https://www.ubisoft.com/en-au/game/tetris-ultimate/

https://www.ubisoft.com/en-au/game/tetris-ultimate/

Goals

•RISC-V front-end to a modern micro-architecture

•Explore (m:n IR) mapping from RISC-V to x86-64

•Map RISC-V ops to µops via legacy x86 decoder

•Maintain highest possible instruction density

•Target: ~1X order of magnitude performance

•Production quality RISC-V Execution Environment

 ninety-ninety rule

The first 90 percent of the code accounts for the first
90 percent of the development time. The remaining 10
percent of the code accounts for the other 90 percent.

Optimisations

•Statistically optimised static register allocation

•CISC Memory operands for spilled registers

•Inline caching of hot functions

•Indirect branch acceleration

•Macro-op fusion

•Branch tail dynamic linking

Image Credit: eMotimo http://emotimo.com/

More optimisations …

•Phase II – dynamic register allocation

•Redundant sign extension elimination

•Lifting constants from registers to immediate

•Constant propagation, reaching def analysis

•Lifting complex bit manipulation intrinsics

•De-optimisation metadata for correctness

CISC vs RISC

•x86-64

•2 operands, destructive

•implicit dependencies

•flexible but complex  
memory operands

•RISC-V

•3 operands, explicit dependencies, load, store

Register allocation

•rv8 currently uses a static allocation

•Similar to the set of registers 
accessible by the RVC compressed ISA

•Access spilled registers using memory  
operands, 3 cycle latency for L1 access

•Investigating dynamic register allocation

•Lift RISC-V machine code to SSA form

Register allocation

•ALU ops on native registers – ~1 cycle

•ALU ops on memory operands in L1 – ~3 cycles

•Register Allocation (Memory, Static, Dynamic)

•Static allocation performance depends on the
compiler’s choice of registers i.e. RVC

•Benchmarks where static allocation is near
optimal have close to native performance

Register allocation

Register allocation

Translator temporaries

•MOV rax, [rbp + n] pattern for read-modify-write
on spilled registers requires 1 temporary register

•Loads and stores require 2 temporary registers
for operations on spilled registers

•Complex operations such as MULH[S][U], DIV[U],
REM[U] require 2 temporary registers

Translator temporaries

•Loads, stores and complex ops require 2 registers
for operations on spilled registers

•Register allocator can assign temporary registers
between loads, stores and complex ops

•Pipelined instructions (short live spans)

 # 0x0000000000017e26 add s2, s2, a0  
 # 0x0000000000017e26 lw s2, 48(s2)  
 mov eax, dword [rbp+0x4C]  
 add eax, r8  
 movsxd eax, dword [eax+0x30]  
 mov dword [rbp+0x4C], eax

Immediate operands
•RISC-V uses registers for  

constants >12 bits

•x86-64 can encode 32-bit  
immediate operands and  
64-bit with MOVABS

•Reduce register pressure

•Requires de-optimisation 
techniques to reify elided  
register values

Sign extension
•0xffffffff80000000 vs 0x0000000080000000

•Current implementation performs eager sign
extension using MOVSX after all 32-bit operations

•This has a significant performance impact on 
64-bit code that uses a lot of 32-bit operations

•Analysis pass can elide sign extension if the result
is used in another 32-bit operation

•or sign preserving operations (and/or/xor/not)

Indirect branches
•Indirect calls and returns 

require looking up trace  
cache to find address of 
translated code

•RET, JALR ra, t0

•Avoid expensive returns 
to the interpreter

•Small assembly stub contains fast path that
performs direct mapped trace cache lookup

Inline caching
•Inlining of hot functions

•Maintain pc histogram 
during interpretation

•Maintain call stack  
during translation

•Compare return 
address on return

•Handle setjmp/longjmp and context switching

Macro-op fusion

•AUIPC+JALR is interpreted as a direct jump and
link with target address temporary side effect

•AUIPC+{LW,LD} are fused into a single MOV

•SLLI r1,r1,32; SRLI r1,r1,32 is fused into MOVZX

Branch tail linking

•Current JIT gathers stats during interpretation
and performs translation during runtime tracing

•Not taken sides of branches cause “tail exits”

•Tails branch to program counter trampolines

•When branch is taken enough times it is lazily
dynamically linked to translated native code

•Incremental profile guided dynamic linking

Bit manipulation

•Lift simple patterns such as rotate and bit test

•ROL, ROR, BT

•Lift more complex patterns such as byte swap

•BSWAP, MOVBE

•Requires de-optimisation to elide temporaries

•Ultimately we need the ‘B’ Extension

De-optimisation

•Elide writes to temporary registers

•AUIPC+JALR (CALL), ROT, ROL, BSWAP

•Elide register writes for 32-bit immediate operands

•LI t0, 0xff000000

•Safety and correctness – Reaching definition analysis

• Interrupts – metadata to reconstruct elided values

Benchmarks

Image Credit: Advanced Engine Research P32 T 4.0 Litre V8 - 650 HP
http://mulsannescorner.com/aerturbolmp1v8.html

Image Credit: 2013 Chevrolet Equinox 3.0 Litre V6 - 182 HP 
http://www.motortrend.com/cars/chevrolet/equinox/2013/

http://mulsannescorner.com/aerturbolmp1v8.html

Benchmarks

•i386, x86-64, riscv32, riscv64, arm32, aarch64

•Host: Intel Core i7-5557U (3.1GHz, 4MB cache)

•Benchmarks run 20 times and best result is taken

•Position independent executables (-fPIE)

•x86-64 μops measured with

• perf stat -e cycles,instructions,r1b1,r10e,r2c2,r1c2

Benchmarks
Program Category Description

aes crypto encrypt, decrypt and compare 30MiB of data

bigint numeric compute 23 ^ 111121 and count base 10 digits

dhrystone synthetic well known synthetic integer workload

miniz compression compress, decompress and compare 8MiB of data

norx crypto encrypt, decrypt and compare 30MiB of data

primes numeric calculate largest prime number below 33333333

qsort sorting sort array containing 50 million items

sha512 digest calculate SHA-512 hash of 64MiB of data

Ratios (-O3, 64-bit)

Program qemu-aarch64 qemu-riscv64 rv8-riscv64 native-x86-64

aes 4.12 6.76 4.68 1.00

bigint 3.62 2.83 1.85 1.00

dhrystone 9.96 5.87 2.03 1.00

miniz 3.46 2.86 1.99 1.00

norx 2.73 5.33 4.51 1.00

primes 3.49 2.11 1.09 1.00

qsort 11.55 7.46 1.90 1.00

sha512 2.66 5.13 3.36 1.00

(Geomean) 4.44 4.39 2.40 1.00

Ratios (-O3, 32-bit)

Program qemu-arm32 qemu-riscv32 rv8-riscv32 native-x86-32

aes 3.56 3.97 3.09 1.00

bigint 3.39 1.56 1.61 1.00

dhrystone 4.13 3.91 1.37 1.00

miniz 3.40 2.47 1.60 1.00

norx 2.98 2.96 3.00 1.00

primes 2.79 1.55 1.25 1.00

qsort 12.04 6.54 1.65 1.00

sha512 6.04 4.60 3.04 1.00

(Geomean) 4.23 3.09 1.95 1.00

MIPs (-O3, 64-bit)

Program qemu-riscv64 rv8-riscv64 native-x86-64

aes 2414 3489 11035

bigint 3738 5720 10557

dhrystone 1843 5327 8369

miniz 2625 3778 5530

norx 2223 2628 9112

primes 2438 4712 6100

qsort 644 2527 5780

sha512 2982 4550 12177

(Geomean) 2149 3932 8232

MIPs (-O3, 32-bit)

Program qemu-riscv32 rv8-riscv32 native-x86-32

aes 2442 3137 9634

bigint 3964 3837 9780

dhrystone 1998 5696 3747

miniz 2195 3384 4988

norx 2824 2791 9146

primes 3039 3773 6368

qsort 671 2667 6259

sha512 2773 4200 11074

(Geomean) 2259 3586 7186

rv8.io/bench
•Benchmark Runtimes

•Compiler Optimisation Level Comparison

•Instructions Per Second (MIPS)

•Dynamic Retired Micro-ops

•Static Executable File Sizes

•Dynamic Register Usage Histograms

•Dynamic Instruction Usage Histograms

http://rv8.io/bench

Instruction counting
•JIT accelerated (“instret”)

•Update counters at basic block boundaries

•Quickly gather dynamic instruction counts

•~20% performance hit for (“instret”)

•Maintain billions of Instructions per second

•Potential to accelerate other performance counters

•e.g. dynamic retired instruction bytes

Future work

•Native performance full system emulation

•Dynamic register allocation

•Coalescing op + loads and stores and indexed
load stores into complex memory operands

•De-optimisation – register write elision for
constants and macro-op fusion side effects

•Hardware accelerated MMU using shadow paging

